Disruption of cell polarity by enteropathogenic Escherichia coli enables basolateral membrane proteins to migrate apically and to potentiate physiological consequences.
نویسندگان
چکیده
Enteropathogenic Escherichia coli (EPEC) disrupts the structure and barrier function of host intestinal epithelial tight junctions (TJs). The impact of EPEC on TJ "fence function," i.e., maintenance of cell polarity, has not been investigated. In polarized cells, proteins such as beta(1)-integrin and Na(+)/K(+) ATPase are restricted to basolateral (BL) membranes. The outer membrane EPEC protein intimin possesses binding sites for the EPEC translocated intimin receptor (Tir) and beta(1)-integrin. Restriction of beta(1)-integrin to BL domains, however, precludes opportunity for interaction. We hypothesize that EPEC perturbs TJ fence function and frees BL proteins such as beta(1)-integrin to migrate to apical (AP) membranes of host cells, thus allowing interactions with bacterial adhesins such as intimin. The aim of this study was to determine whether EPEC alters the polar distribution of BL proteins, in particular beta(1)-integrin, and if such redistribution contributes to pathogenesis. Human intestinal epithelial T84 cells and EPEC strain E2348/69 were used. Selective biotinylation of AP or BL membrane proteins and confocal microscopy showed the presence of beta(1)-integrin and Na(+)/K(+) ATPase on the AP membrane following infection. beta(1)-Integrin antibody afforded no protection against the initial EPEC-induced decrease in transepithelial electrical resistance (TER) but halted the progressive decrease at later time points. While the effects of EPEC on TJ barrier and fence function were Tir dependent, disruption of cell polarity by calcium chelation allowed a tir mutant to be nearly as effective as wild-type EPEC. In contrast, deletion of espD, which renders the type III secretory system ineffective, had no effect on TER even after calcium chelation, suggesting that the putative beta(1)-integrin-intimin interaction serves to provide intimate contact, like that of Tir and intimin, making translocation of effector molecules more efficient. We conclude that the initial alterations of TJ barrier and fence function by EPEC are Tir dependent but that later disruption of cell polarity and accessibility of EPEC to BL membrane proteins, such as beta(1)-integrin, potentiates the physiological perturbations.
منابع مشابه
The basolateral vesicle sorting machinery and basolateral proteins are recruited to the site of enteropathogenic E. coli microcolony growth at the apical membrane
Foodborne Enteropathogenic Escherichia coli (EPEC) infections of the small intestine cause diarrhea especially in children and are a major cause of childhood death in developing countries. EPEC infects the apical membrane of the epithelium of the small intestine by attaching, effacing the microvilli under the bacteria and then forming microcolonies on the cell surface. We first asked the questi...
متن کاملMicrobes and microbial toxins: paradigms for microbial-mucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position.
Enteropathogenic Escherichia coli (EPEC) is primarily associated with infantile diarrhea in developing countries. This intriguing pathogen exerts numerous physiological effects on its host target tissue, the intestinal epithelium, all from an extracellular location. Expression of a type III secretory apparatus allows this organism to transfer bacterial effector molecules directly into host cell...
متن کاملEnteropathogenic Escherichia coli activates ezrin, which participates in disruption of tight junction barrier function.
Enteropathogenic Escherichia coli (EPEC) is an important human intestinal pathogen, especially in infants. EPEC adherence to intestinal epithelial cells induces the accumulation of a number of cytoskeletal proteins beneath the bacteria, including the membrane-cytoskeleton linker ezrin. Evidence suggests that ezrin can participate in signal transduction. The aim of this study was to determine wh...
متن کاملSDS-PAGE Analysis of the Outer Membrane Proteins of Uropathogenic Escherichia coli Isolated from Patients in Different Wards of Nemazee Hospital, Shiraz, Iran
Background: Outer membrane proteins (OMPs) constitute the main structure and about half of the cell wall of Gram-negative bacteria. The OMPs of Escherichia coli (E. coli) play an important role in its drug resistance. Previous studies have shown that the OMPs of E. coli enhance its pathogenic effects by helping the bacterium to evade the immune defense and promote its adsorption to host cells. ...
متن کاملThe EspF effector – a bacterial pathogen ’ s
10 Central to the pathogenesis of many bacterial pathogens is the ability to deliver effector 11 proteins directly into the cells of their eukaryotic host. EspF is one of many effector proteins 12 exclusive to the attaching and effacing pathogen family that includes enteropathogenic 13 (EPEC) and enterohemorrhagic E. coli (EHEC). Work in recent years has revealed EspF to be 14 one of the most m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 71 12 شماره
صفحات -
تاریخ انتشار 2003